Abstract: We present a simple parallel algorithm for the single-source shortest path
problem in planar digraphs with nonnegative real edge weights. The algorithm runs
on the EREW PRAM model of parallel computation in O((n2=+n1&=) log n)
time, performing O(n1+= log n) work for any 0<{\aa}<1/2. The strength of the
algorithm is its simplicity, making it easy to implement and presumable quite
efficient in practice. The algorithm improves upon the work of all previous
parallel algorithms. Our algorithm is based on a region decomposition of the
input graph and uses a well-known parallel implementation of Dijkstra's
algorithm. The logarithmic factor in both the work and the time can be
eliminated by plugging in a less practical, sequential planar shortest path
algorithm together with an improved parallel implementation of Dijkstra's
algorithm.

Abstract: We present an improved upper bound on the competitiveness of the online colouring algorithm First-Fit in disk graphs, which
are graphs representing overlaps of disks on the plane. We also show that this bound is best possible for deterministic online
colouring algorithms that do not use the disk representation of the input graph. We also present a related new lower bound for unit
disk graphs.

Abstract: For many random Constraint Satisfaction Problems, by now, we have asymptotically tight estimates of
the largest constraint density for which they have solutions. At the same time, all known polynomial-time algorithms
for many of these problems already completely fail to find solutions at much smaller densities. For example, it is
well-known that it is easy to color a random graph using twice as many colors as its chromatic number. Indeed, some
of the simplest possible coloring algorithms already achieve this goal. Given the simplicity of those algorithms, one
would expect there is a lot of room for improvement. Yet, to date, no algorithm is known that uses (2 - o)÷ colors,
in spite of efforts by numerous researchers over the years.
In view of the remarkable resilience of this factor of 2 against every algorithm hurled at it, we believe it is natural to
inquire into its origin. We do so by analyzing the evolution of the set of k-colorings of a random graph, viewed as a
subset of {1, . . . , k}n, as edges are added. We prove that the factor of 2 corresponds in a precise mathematical sense
to a phase transition in the geometry of this set. Roughly, the set of k-colorings looks like a giant ball for k ? 2÷, but
like an error-correcting code for k ? (2 - o)÷. We prove that a completely analogous phase transition also occurs both in random k-SAT and in random hypergraph 2-coloring. And that for each problem, its location corresponds precisely with the point were all known polynomial-time algorithms fail. To prove our results we develop a general technique that allows us to prove rigorously much of the celebrated 1-step Replica-Symmetry-Breaking hypothesis
of statistical physics for random CSPs.

Abstract: For a number of optimization problems on random graphs
and hypergraphs, e.g., k-colorings, there is a very big gap between the
largest average degree for which known polynomial-time algorithms can
find solutions, and the largest average degree for which solutions provably
exist. We study this phenomenon by examining how sets of solutions
evolve as edges are added.We prove in a precise mathematical sense that,
for each problem studied, the barrier faced by algorithms corresponds
to a phase transition in the problems solution-space geometry. Roughly
speaking, at some problem-specific critical density, the set of solutions
shatters and goes from being a single giant ball to exponentially many,
well-separated, tiny pieces. All known polynomial-time algorithms work
in the ball regime, but stop as soon as the shattering occurs. Besides
giving a geometric view of the solution space of random instances our
results provide novel constructions of one-way functions.

Abstract: An ever growing emphasis is put nowadays in developing personalized journey planning and renewable mobility services in smart cities. These services combine means of scheduled-based public transport and electric vehicles or bikes, using crowdsourcing techniques for collecting real-time traffic information and for assessing the recommended routes. The goal is to develop an information system that will allow the fast, real-time computation of best routes.
The main challenges in developing such an information system are both technological and algorithmic. The technological challenge concerns the collection, storage, management, and updating of a huge volume of transport data that are usually time-dependent, and the provision (through these data) of personalized renewable mobility services in smartphones. This challenge is typically confronted by creating a cloud infrastructure that on the one hand will support the storage, management, and updating of data, while on the other hand it will handle the necessary data feed to the smartphone applications for providing the users with the requested best routes.
The algorithmic challenge concerns the development of innovative algorithms for the efficient provision of journey planning services in smartphones, based on data they will receive from the cloud infrastructure. These services guarantee the computation of realistic and useful best routes, as well as the updating of the precomputed (route and timetable) information, in case of delays of scheduled public transport vehicles, so that the users can online update their routes to destination. The goal is to develop an algorithmic basis for supporting modern renewable mobility services (information systems), such as "mobility on demand'' (where the next leg of a journey is decided in real-time) and "door-to-door'' personalized mobility, in urban scheduled-based public transport environments. Scheduled-based public transport information systems should not only compute in real-time end-user queries requesting best routes, but also to update the timetable information in case of delays.
The core algorithmic issues of mobility and journey planning (regarding the computation of optimal routes under certain criteria) in scheduled-based public transport systems concern the efficient solution of the fundamental earlier arrival (EA) problem (compute a journey from station S to station T minimizing the overall traveling time required to complete the journey), the minimum number of
transfers (MNT) problem (compute a journey from station S to station T minimizing the number of times a passenger is required to change vehicle), and the efficient updating of timetable information system in case of vehicle delays. The EA and MNT problems have been extensively studied in the literature under two main approaches: the array-based modeling (where the timetable is represented as an array) and the graph-based modeling (where the timetable is represented as a graph). Experimental results have shown so far that the array-based approaches are faster in terms of query time than graph-based ones, as they are able to better exploit data locality and do not rely on priority queues. On the other hand, the array-based approaches have not been theoretically or experimentally studied as far as the efficient updating of timetable information, in case of delays, is concerned.
In this thesis, new graph-based models are being developed that solve efficiently the aforementioned fundamental algorithmic mobility problems in urban scheduled-based public transport information systems, along with a mobile application (journey planner) running on Android-based smartphones that includes a service for the evaluation of the recommended routes by the users. In particular:
(a) An extensive comparative evaluation was conducted on graph-based dynamic models that represent big data volumes regarding their suitability for representing timetable information. The study confirmed that the realistic time-expanded model is the most suitable for representing timetable information.
(b) Two new graph-based models have been developed for representing timetable information (in a timetable information system), the reduced time-expanded model and the dynamic timetable model (DTM), both of which are more space-efficient with respect to the realistic time-expanded model. For both of the new models, new efficient algorithms were developed for fast answering of EA and MNT queries, as well as for updating the timetable information representation in case of delays.
(c)An experimental evaluation was conducted with the new graph-based models and their associated query and update algorithms on a set of 14 real-world scheduled-based transportation systems, including the metropolitan areas of Berlin, Athens, London, Rome, and Madrid. The experimental results showed that the query algorithms of the reduced time-expanded model are superior to those of the DTM model, while the reverse is true regarding the update algorithms. In addition, the experimental study showed that the query algorithms of the new graph-based models compete favorably with those of the best array-based models.
(d) A mobile, cloud-based, journey planner (information system) was developed whose core algorithmic engine builds upon the new graph-based models. The mobile application is accompanied by a service that allows the users to assess the recommended journeys. The journey planner demonstrates the practicality of the new graph-based models and their associated query and update algorithms.

Abstract: In this work we study the important problem of colouring squares of planar graphs (SQPG). We design and implement two new algorithms that colour in a different way SQPG. We call these algorithms MDsatur and RC. We have also implemented and experimentally evaluated the performance of most of the known approximation colouring algorithms for SQPG [14, 6, 4, 10]. We compare the quality of the colourings achieved by these algorithms, with the colourings obtained by our algorithms and with the results obtained from two well-known greedy colouring heuristics. The heuristics are mainly used for comparison reasons and unexpectedly give very good results. Our algorithm MDsatur outperforms the known algorithms as shown by the extensive experiments we have carried out.
The planar graph instances whose squares are used in our experiments are “non-extremal” graphs obtained by LEDA and hard colourable graph instances that we construct.
The most interesting conclusions of our experimental study are:
1) all colouring algorithms considered here have almost optimal performance on the squares of “non-extremal” planar graphs. 2) all known colouring algorithms especially designed for colouring SQPG, give significantly better results, even on hard to colour graphs, when the vertices of the input graph are randomly named. On the other hand, the performance of our algorithm, MDsatur, becomes worse in this case, however it still has the best performance compared to the others. MDsatur colours the tested graphs with 1.1 OPT colours in most of the cases, even on hard instances, where OPT denotes the number of colours in an optimal colouring. 3) we construct worst case instances for the algorithm of Fotakis el al. [6], which show that its theoretical analysis is tight.

Abstract: Algorithms are presented for the all-pairs min-cut problem in bounded tree-width, planar, and sparse networks. The approach used is to preprocess the inputn-vertex network so that afterward, the value of a min-cut between any two vertices can be efficiently computed. A tradeoff is shown between the preprocessing time and the time taken to compute min-cuts subsequently. In particular, after anO(n log n) preprocessing of a bounded tree-width network, it is possible to find the value of a min-cut between any two vertices in constant time. This implies that for such networks the all-pairs min-cut problem can be solved in timeO(n2). This algorithm is used in conjunction with a graph decomposition technique of Frederickson to obtain algorithms for sparse and planar networks. The running times depend upon a topological property, \~{a}, of the input network. The parameter \~{a} varies between 1 and {\`E}(n); the algorithms perform well when \~{a} = o(n). The value of a min-cut can be found in timeO(n + \~{a}2log \~{a}) and all-pairs min-cut can be solved in timeO(n2 + \~{a}4log \~{a}) for sparse networks. The corresponding running times for planar networks areO(n + \~{a} log \~{a}) andO(n2 + \~{a}3log \~{a}), respectively. The latter bounds depend on a result of independent interest; outerplanar networks have small “mimicking” networks that are also outerplanar.

Abstract: We have conducted an extensive experimental study on algorithms for fully dynamic transitive
closure. We have implemented the recent fully dynamic algorithms by King [1999], Roditty [2003],
Roditty and Zwick [2002, 2004], and Demetrescu and Italiano [2000, 2005] along with several variants
and compared them to pseudo fully dynamic and simple-minded algorithms developed in a
previous study [Frigioni et al. 2001].We tested and compared these implementations on random inputs,
synthetic (worst-case) inputs, and on inputs motivated by real-world graphs. Our experiments
reveal that some of the dynamic algorithms can really be of practical value in many situations.

Abstract: We have conducted an extensive experimental study on algorithms for fully dynamic transitive
closure. We have implemented the recent fully dynamic algorithms by King [1999], Roditty [2003],
Roditty and Zwick [2002, 2004], and Demetrescu and Italiano [2000, 2005] along with several variants
and compared them to pseudo fully dynamic and simple-minded algorithms developed in a
previous study [Frigioni et al. 2001].We tested and compared these implementations on random inputs,
synthetic (worst-case) inputs, and on inputs motivated by real-world graphs. Our experiments
reveal that some of the dynamic algorithms can really be of practical value in many situations.

Abstract: We perform an extensive experimental study of several dynamic algorithms for transitive closure. In particular, we implemented algorithms given by Italiano, Yellin, Cicerone et al., and two recent randomized algorithms by Henzinger and King. We propose a fine-tuned version of Italiano's algorithms as well as a new variant of them, both of which were always faster than any of the other implementations of the dynamic algorithms. We also considered simple-minded algorithms that were easy to implement and likely to be fast in practice. Wetested and compared the above implementations on random inputs, on non-random inputs that are worst-case inputs for the dynamic algorithms, and on an input motivated by a real-world graph.

Abstract: Urban road networks are represented as directed graphs, accompanied by a metric which assigns cost functions (rather than scalars) to the arcs, e.g. representing time-dependent arc-traversal-times. In this work, we present oracles for providing time-dependent min-cost route plans, and conduct their experimental evaluation on a real-world data set (city of Berlin). Our oracles are based on precomputing all landmark-to-vertex shortest travel-time functions, for properly selected landmark sets. The core of this preprocessing phase is based on a novel, quite efficient and simple oneto-all approximation method for creating approximations of shortest travel-time functions. We then propose three query algorithms, including a PTAS, to efficiently provide mincost route plan responses to arbitrary queries. Apart from the purely algorithmic challenges, we deal also with several
implementation details concerning the digestion of raw traffic data, and we provide heuristic improvements of both the preprocessing phase and the query algorithms. We conduct an extensive, comparative experimental study with all query algorithms and six landmark sets. Our results are quite encouraging, achieving remarkable speedups (at least by two orders of magnitude) and quite small approximation guarantees, over the time-dependent variant of Dijkstra¢s algorithm.

Abstract: We study the following Constrained Bipartite Edge Coloring problem: We are given a bipartite graph G=(U,V,E) of maximum degree I with n vertices, in which some of the edges have been legally colored with c colors. We wish to complete the coloring of the edges of G minimizing the total number of colors used. The problem has been proved to be NP-hard even for bipartite graphs of maximum degree three. Two special cases of the problem have been previously considered and tight upper and ower bounds on the optimal number of colors were proved. The upper bounds led to 3/2-approximation algorithms for both problems. In this paper we present a randomized (1.37+o(1))-approximation algorithm for the general problem in the case where max{l,c} = {\`u}(ln n). Our techniques are motivated by recent works on the Circular Arc Coloring problem and are essentially different and simpler than the existing ones.

Abstract: Motivated by the wavelength assignment problem in WDM optical networks, we study path coloring problems in graphs. Given a set of paths P on a graph G, the path coloring problem is to color the paths of P so that no two paths traversing the same edge of G are assigned the same color and the total number of colors used is minimized. The problem has been proved to be NP-hard even for trees and rings.
Using optimal solutions to fractional path coloring, a natural relaxation of path coloring, on which we apply a randomized rounding technique combined with existing coloring algorithms, we obtain new upper bounds on the minimum number of colors sufficient to color any set of paths on any graph. The upper bounds are either existential or constructive.
The existential upper bounds significantly improve existing ones provided that the cost of the optimal fractional path coloring is sufficiently large and the dilation of the set of paths is small. Our algorithmic results include improved approximation algorithms for path coloring in rings and in bidirected trees. Our results extend to variations of the original path coloring problem arizing in multifiber WDM optical networks.

Abstract: We study the problem of maintaining connectivity in a wireless
network where the network nodes are equipped with
directional antennas. Nodes correspond to points on the
plane and each uses a directional antenna modeled by a sector
with a given angle and radius. The connectivity problem
is to decide whether or not it is possible to orient the antennas
so that the directed graph induced by the node transmissions
is strongly connected. We present algorithms for
simple polynomial-time-solvable cases of the problem, show
that the problem is NP-complete in the 2-dimensional case
when the sector angle is small, and present algorithms that
approximate the minimum radius to achieve connectivity for
sectors with a given angle. We also discuss several extensions
to related problems. To the best of our knowledge, the
problem has not been studied before in the literature.

Abstract: We address an important communication issue arising in
wireless cellular networks that utilize frequency division
multiplexing (FDM) technology. In such networks, many
users within the same geographical region (cell) can communicate
simultaneously with other users of the network
using distinct frequencies. The spectrum of the available
frequencies is limited; thus, efficient solutions to the call
controlproblemareessential.Theobjectiveofthecallcontrol
problem is, given a spectrum of available frequencies
and users that wish tocommunicate, to maximize the benefit,
i.e., the number of users that communicate without
signalinterference.Weconsidercellularnetworksofreuse
distance k ≥ 2 and we study the online version of the
problem using competitive analysis. In cellular networks
of reuse distance 2, the previously best known algorithm
that beats the lower bound of 3 on the competitiveness
of deterministic algorithms, works on networks with one
frequency, achieves a competitive ratio against oblivious
adversaries, which is between 2.469 and 2.651, and uses
a number of random bits at least proportional to the size
of the network.We significantly improve this result by presentingaseriesofsimplerandomizedalgorithmsthathave
competitiveratiossignificantlysmallerthan3,workonnetworks
with arbitrarily many frequencies, and use only a
constant number of random bits or a comparable weak
random source. The best competitiveness upper bound
we obtain is 16/7 using only four random bits. In cellular
networks of reuse distance k > 2, we present simple
randomized online call control algorithms with competitive
ratios, which significantly beat the lower bounds on
the competitiveness of deterministic ones and use only
O(log k )randombits. Also,weshownewlowerboundson
thecompetitivenessofonlinecallcontrolalgorithmsincellularnetworksofanyreusedistance.
Inparticular,weshow
thatnoonline algorithm can achieve competitive ratio better
than 2, 25/12, and 2.5, in cellular networks with reuse
distancek ∈ {2, 3, 4},k = 5,andk ≥ 6, respectively.

Abstract: This paper addresses the problem of counting the size of a network where (i) processes have the same identifiers (anonymous nodes) and (ii) the et-
work topology constantly changes (dynamic network). Changes are riven by a powerful adversary that can look at internal process states and add and remove edges in order to contrast the convergence of the algorithm to the correct count. The paper proposes two leader-based counting algorithms. Such algorithms are based on a technique that mimics an energy-transfer between network nodes. The first algorithm assumes that the adversary cannot generate either disconnected network graphs or network graphs where nodes have degree greater than D. In such algorithm, the leader can count the size of the network and detect the counting termination in a finite time (i.e., conscious counting algorithm). The second algorithm assumes that the adversary only keeps the network graph connected at any time and we prove that the leader can still converge to a correct count in a finite number of rounds, but it is not conscious when this convergence happens.

Abstract: DAP (Distributed Algorithms Platform) is a generic and homogeneous simulation environment aiming at the implementation, simulation, and testing of distributed algorithms for wired and wireless networks. In this work, we present its architecture, the most important design decisions, and discuss its distinct features and functionalities. DAP allows the algorithm designer to implement a distributed protocol by creating his own customized environment, and programming in a standard programming language in a style very similar to that of a real-world application. DAP provides a graphical user interface that allows the designer to monitor and control the execution of simulations, visualize algorithms, as well as gather statistics and other information for their experimental analysis and testing.

Abstract: In this work we investigate the problem of communication among mobile hosts, one of the most fundamental problems in ad-hoc mobile networks that is at the core of many algorithms. Our work investigates the extreme case of total absence of any fixed network backbone or centralized administration, instantly forming networks based only on mobile hosts with wireless communication capabilities, where topological connectivity is subject to frequent, unpredictable change.
For such dynamically changing networks we propose a set of protocols which exploit the coordinated (by the protocol) motion of a small part of the network in order to manage network operations. We show that such protocols can be designed to work correctly and efficiently for communication by avoiding message flooding. Our protocols manage to establish communication between any pair of mobile hosts in small, a-priori guaranteed expected time bounds. Our results exploit and further develop some fundamental properties of random walks in finite graph.
Apart from studying the general case, we identify two practical and interesting cases of ad-hoc mobile networks: a) hierarchical ad-hoc networks, b) highly changing ad-hoc networks, for which we propose protocols that efficiently deal with the problem of basic communication.
We have conducted a set of extensive experiments, comprised of thousands of mobile hosts in order to validate the theoretical results and show that our protocols achieve very efficient communication under different scenaria.

Abstract: Using a set of geometric containers to speed up shortest path queries in a weighted graph has been proven a useful tool for dealing with large sparse graphs. Given a layout of a graph G=(V,E), we store, for each edge (u,v)set membership, variantE, the bounding box of all nodes tset membership, variantV for which a shortest u-t-path starts with (u,v). Shortest path queries can then be answered by DijkstraImage restricted to edges where the corresponding bounding box contains the target.
In this paper, we present new algorithms as well as an empirical study for the dynamic case of this problem, where edge weights are subject to change and the bounding boxes have to be updated. We evaluate the quality and the time for different update strategies that guarantee correct shortest paths in an interesting application to railway information systems, using real-world data from six European countries.

Abstract: The problem of finding an implicit representation for a graph such that vertex adjacency can be tested quickly is fundamental to all graphalgorithms. In particular, it is possible to represent sparse graphs on n vertices using O(n) space such that vertex adjacency is tested in O(l) time. We show here how to construct such a representation efficiently by providing simple and optimal algorithms, both in a sequential and a parallel setting. Our sequential algorithm runs in O(n) time. The parallel algorithm runs in O(log n) time using O(n/log n) CRCW PRAM processors, or inO(log n log* n) time using O(n/log n log* n) EREW PRAM processors. Previous results for this problem are based on matroid partitioning and thus have a high complexity.

Abstract: In this paper we consider communication issues arising in mobile networks that utilize Frequency Division Multiplexing (FDM) technology. In such networks, many users within the same geographical region can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of available frequencies is limited; thus, efficient solutions to the frequency allocation and the call control problem are essential. In the frequency allocation problem, given users that wish to communicate, the objective is to minimize the required spectrum of frequencies so that communication can be established without signal interference. The objective of the call control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users served. We consider cellular, planar, and arbitrary network topologies. In particular, we study the on-line version of both problems using competitive analysis. For frequency allocation in cellular networks, we improve the best known competitive ratio upper bound of 3 achieved by the folklore Fixed Allocation algorithm, by presenting an almost tight competitive analysis for the greedy algorithm; we prove that its competitive ratio is between 2.429 and 2.5. For the call control problem, we present the first randomized algorithm that beats the deterministic lower bound of 3 achieving a competitive ratio of 2.934 in cellular networks. Our analysis has interesting extensions to arbitrary networks. Also, using Yao's Minimax Principle, we prove two lower bounds of 1.857 and 2.086 on the competitive ratio of randomized call control algorithms for cellular and arbitrary planar networks, respectively.

Abstract: In this paper we consider communication issues arising in cellular (mobile) networks that utilize frequency division multiplexing (FDM) technology. In such networks, many users within the same geographical region can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of available frequencies is limited; thus, efficient solutions to the frequency-allocation and the call-control problems are essential. In the frequency-allocation problem, given users that wish to communicate, the objective is to minimize the required spectrum of frequencies so that communication can be established without signal interference. The objective of the call-control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users served. We consider cellular, planar, and arbitrary network topologies.
In particular, we study the on-line version of both problems using competitive analysis. For frequency allocation in cellular networks, we improve the best known competitive ratio upper bound of 3 achieved by the folklore Fixed Allocation algorithm, by presenting an almost tight competitive analysis for the greedy algorithm; we prove that its competitive ratio is between 2.429 and 2.5 . For the call-control problem, we present the first randomized algorithm that beats the deterministic lower bound of 3 achieving a competitive ratio between 2.469 and 2.651 for cellular networks. Our analysis has interesting extensions to arbitrary networks. Also, using Yao's Minimax Principle, we prove two lower bounds of 1.857 and 2.086 on the competitive ratio of randomized call-control algorithms for cellular and arbitrary planar networks, respectively.

Abstract: Many efforts have been done in the last years to model public transport timetables in order to
find optimal routes. The proposed models can be classified into two types: those representing the
timetable as an array, and those representing it as a graph. The array-based models have been
shown to be very effective in terms of query time, while the graph-based models usually answer
queries by computing shortest paths, and hence they are suitable to be used in combination with
speed-up techniques developed for road networks.
In this paper, we focus on the dynamic behavior of graph-based models considering the case
where transportation systems are subject to delays with respect to the given timetable. We
make three contributions: (i) we give a simplified and optimized update routine for the wellknown
time-expanded model along with an engineered query algorithm; (ii) we propose a new
graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of
the proposed models and algorithms by an experimental study, which shows that both models
require negligible update time and a query time which is comparable to that required by some
array-based models.

Abstract: We consider classical linear-time planar separator algorithms, determining for a given planar graph a small subset of the nodes whose removal separates the graph into two components of similar size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size MediaObjects/InlineFigure1.png and remaining components of size less than 2n/3. In this work, we present a comprehensive experimental study of the algorithms applied to a large variety of graphs, where the main goal is to find separators that do not only satisfy upper bounds but also possess other desirable qualities with respect to separator size and component balance. We propose the usage of fundamental cycles, whose size is at most twice the diameter of the graph, as planar separators: For graphs of small diameter the guaranteed bound is better than the MediaObjects/InlineFigure2.png bounds, and it turns out that this simple strategy almost always outperforms the other algorithms, even for graphs with large diameter.

Abstract: In this work we experimentally study the min order Radiocoloring problem (RCP) on Chordal, Split and Permutation graphs, which are three basic families of perfect graphs. This problem asks to find an assignment using the minimum number of colors to the vertices of a given graph G, so that each pair of vertices which are at distance at most two apart in G have different colors. RCP is an NP-Complete problem on chordal and split graphs [4]. For each of the three families, there are upper bounds or/and approximation algorithms known for minimum number of colors needed to radiocolor such a graph [4,10].
We design and implement radiocoloring heuristics for graphs of above families, which are based on the greedy heuristic. Also, for each one of the above families, we investigate whether there exists graph instances requiring a number of colors in order to be radiocolored, close to the best known upper bound for the family. Towards this goal, we present a number generators that produce graphs of the above families that require either (i) a large number of colors (compared to the best upper bound), in order to be radiocolored, called ldquoextremalrdquo graphs or (ii) a small number of colors, called ldquonon-extremalrdquoinstances. The experimental evaluation showed that random generated graph instances are in the most of the cases ldquonon-extremalrdquo graphs. Also, that greedy like heuristics performs very well in the most of the cases, especially for ldquonon-extremalrdquo graphs.

Abstract: Geographic routing is becoming the protocol of choice for many sensor network applications. Some very efficient geographic routing algorithms exist, however they require a preliminary planarization of the communication graph. Planarization induces overhead which makes this approach not optimal when lightweight protocols are required. On the other hand, georouting algorithms which do not rely on planarization have fairly low success rates and either fail to route messages around all but the simplest obstacles or have a high topology control overhead (e.g. contour detection algorithms). In this entry we describe the GRIC algorithm which was designed to overcome some of those limitations. The GRIC algorithm was proposed in [PN07a]. It is the first lightweight and efficient on demand (i.e. all-to-all) geographic routing algorithm which does not require planarization, has almost 100% delivery rates (when no obstacles are added), and behaves well in the presence of large communication blocking obstacles.

Abstract: A fundamental approach in finding efficiently best routes or optimal itineraries in traffic information
systems is to reduce the search space (part of graph visited) of the most commonly used
shortest path routine (Dijkstra¢s algorithm) on a suitably defined graph. We investigate reduction
of the search space while simultaneously retaining data structures, created during a preprocessing
phase, of size linear (i.e., optimal) to the size of the graph. We show that the search space of
Dijkstra¢s algorithm can be significantly reduced by extracting geometric information from a given
layout of the graph and by encapsulating precomputed shortest-path information in resulted geometric
objects (containers). We present an extensive experimental study comparing the impact of
different types of geometric containers using test data from real-world traffic networks. We also
present new algorithms as well as an empirical study for the dynamic case of this problem, where
edge weights are subject to change and the geometric containers have to be updated and show that
our new methods are two to three times faster than recomputing everything from scratch. Finally,
in an appendix, we discuss the software framework that we developed to realize the implementations
of all of our variants of Dijkstra¢s algorithm. Such a framework is not trivial to achieve as our
goal was to maintain a common code base that is, at the same time, small, efficient, and flexible,
as we wanted to enhance and combine several variants in any possible way.

Abstract: Dynamic graphalgorithms have been extensively studied in the last two
decades due to their wide applicabilityin manycon texts. Recently, several
implementations and experimental studies have been conducted investigating
the practical merits of fundamental techniques and algorithms. In most
cases, these algorithms required sophisticated engineering and fine-tuning
to be turned into efficient implementations. In this paper, we surveysev -
eral implementations along with their experimental studies for dynamic
problems on undirected and directed graphs. The former case includes
dynamic connectivity, dynamic minimum spanning trees, and the sparsification
technique. The latter case includes dynamic transitive closure and
dynamic shortest paths. We also discuss the design and implementation of
a software libraryfor dynamic graphalgorithms.

Abstract: We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs
that exploit the particular topology of the input graph. An important feature of our algorithms is that they can
work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the
case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time.
A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting
tradeoff between preprocessing, query, and update times depending on the value of a certain topological
parameter of the graph. Our results can be extended to n-vertex digraphs of genus O.n1¡"/ for any " > 0.

Abstract: We investigate the existence and efficient algorithmic
construction of close to optimal independent sets in random models
of intersection graphs. In particular, (a) we propose \emph{a new model} for random intersection graphs
($G_{n, m, \vec{p}}$) which includes the model of
\cite{RIG} (the ``uniform" random intersection graphs model) as an
important special case. We also define an interesting variation of
the model of random intersection graphs, similar in spirit to
random regular graphs. (b) For this model we derive \emph{exact formulae} for the mean
and variance of the number of independent sets of size $k$ (for
any $k$) in the graph. (c) We then propose and analyse \emph{three algorithms} for the
efficient construction of large independent sets in this model.
The first two are variations of the greedy technique while the
third is a totally new algorithm. Our algorithms are analysed for
the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding
\emph{close to optimal} independent sets for an interesting range
of graph parameters.

Abstract: Geographic routing scales well in sensor networks, mainly
due to its stateless nature. Still, most of the algorithms are
concerned with finding some path, while the optimality of
the path is difficult to achieve. In this paper we are presenting
a novel geographic routing algorithm with obstacle
avoidance properties. It aims at finding the optimal path
from a source to a destination when some areas of the network
are unavailable for routing due to low local density or
obstacle presence. It locally and gradually with time (but,
as we show, quite fast) evaluates and updates the suitability
of the previously used paths and ignores non optimal paths
for further routing. By means of extensive simulations, we
are comparing its performance to existing state of the art
protocols, showing that it performs much better in terms of
path length thus minimizing latency, space, overall traffic
and energy consumption.

Abstract: Understanding the graph structure of the Internet is a crucial step for building accurate
network models and designing efﬁcient algorithms for Internet applications.Yet,obtaining this graph
structure can be a surprisingly difﬁcult task,as edges cannot be explicitly queried.For instance,
empirical studies of the network of InternetProtocol (IP) addresses typically rely on indirect methods
like trace route to build what are approximately single-source,all-destinations,shortest-path trees.
These trees only sample a fraction of the network’s edges,and a paper by Lakhinaetal.[2003]found
empirically that there sulting sample is intrinsically biased.Further,in simulations,they observed that the degree distribution under trace route sampling exhibits a power law even when the underlying
degree distribution is Poisson.

Abstract: We study the on-line versions of two fundamental graph problems, maximum independent set and minimum coloring, for the case of disk graphs which are graphs resulting from intersections of disks on the plane. In particular, we investigate whether randomization can be used to break known lower bounds for deterministic on-line independent set algorithms and present new upper and lower bounds; we also present an improved upper bound for on-line coloring.

Abstract: Grids offer a transparent interface to geographically scattered computation, communication, storage and
other resources. In this chapter we propose and evaluate QoS-aware and fair scheduling algorithms for
Grid Networks, which are capable of optimally or near-optimally assigning tasks to resources, while taking
into consideration the task characteristics and QoS requirements. We categorize Grid tasks according to
whether or not they demand hard performance guarantees. Tasks with one or more hard requirements are
referred to as Guaranteed Service (GS) tasks, while tasks with no hard requirements are referred to as Best
Effort (BE) tasks. For GS tasks, we propose scheduling algorithms that provide deadline or computational
power guarantees, or offer fair degradation in the QoS such tasks receive in case of congestion. Regarding
BE tasks our objective is to allocate resources in a fair way, where fairness is interpreted in the max-min fair
share sense. Though, we mainly address scheduling problems on computation resources, we also look at
the joint scheduling of communication and computation resources and propose routing and scheduling
algorithms aiming at co-allocating both resource type so as to satisfy their respective QoS requirements.

Abstract: We study the on-line version of the maximum independent set problem, for the case of disk graphs which are graphs resulting
from intersections of disks on the plane. In particular, we investigate whether randomization can be used to break known lower
bounds for deterministic on-line independent set algorithms and present new upper and lower bounds.

Abstract: Embedded computing devices dominate our everyday activities, from cell phones to wireless sensors that collect and process data for various applications. Although desktop and high-end server security seems to be under control by the use of current security technology, securing the low-end embedded computing systems is a difficult long-term problem. This is mainly due to the fact that the embedded systems are constrained by their operational environment and the limited resources they are equipped with. Recent research activities focus on the deployment of lightweight cryptographic algorithms and security protocols that are well suited to the limited resources of low-end embedded systems. Elliptic Curve Cryptography (ECC) offers an interesting alternative to the classical public key cryptography for embedded systems (e.g., RSA and ElGamal), since it uses smaller key sizes for achieving the same security level, thus making ECC an attractive and efficient alternative for deployment in embedded systems. In this chapter, the processing requirements and architectures for secure network access, communication functions, storage, and high availability of embedded devices are discussed. In addition, ECC-based state-of-the-art lightweight cryptographic primitives for the deployment of security protocols in embedded systems that fulfill the requirements are presented.

Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that
subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We
give algorithms that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms
can answer distance queries in O ({\'a}(n) ) time after O.n/ preprocessing. This improves upon previously known
results for the same problem.We also give a dynamic algorithm which, after a change in an edge weight, updates
the data structure in time O.n¯ /, for any constant 0 < ¯ < 1. Furthermore, an algorithm of independent interest
is given: computing a shortest path tree, or finding a negative cycle in linear time.

Abstract: We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give parallel algorithms for the EREW PRAM model of computation that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O({\'a}(n)) time using a single processor, after a preprocessing of O(log2n) time and O(n) work, where {\'a}(n) is the inverse of Ackermann's function. The class of constant treewidth graphs contains outerplanar graphs and series-parallel graphs, among others. To the best of our knowledge, these are the first parallel algorithms which achieve these bounds for any class of graphs except trees. We also give a dynamic algorithm which, after a change in an edge weight, updates our data structures in O(log n) time using O(n{\^a}) work, for any constant 0 < {\^a} < 1. Moreover, we give an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in O(log2n) time using O(n) work.

Abstract: Geographic routing is becoming the protocol of choice for
many sensor network applications. The current state of the art is unsatisfactory:
some algorithms are very efficient, however they require a
preliminary planarization of the communication graph. Planarization induces
overhead and is thus not realistic for some scenarios such as the
case of highly dynamic network topologies. On the other hand, georouting
algorithms which do not rely on planarization have fairly low success
rates and fail to route messages around all but the simplest obstacles.
To overcome these limitations, we propose the GRIC geographic routing
algorithm. It has absolutely no topology maintenance overhead, almost
100% delivery rates (when no obstacles are added), bypasses large convex
obstacles, finds short paths to the destination, resists link failure
and is fairly simple to implement. The case of hard concave obstacles
is also studied; such obstacles are hard instances for which performance
diminishes.

Abstract: In this work, we study protocols (i.e. distributed algorithms) so that populations of distributed processes can construct networks. In order to highlight the basic principles of distributed network construction we keep the model minimal in all respects. In particular, we assume finite-state processes that all begin from the same initial state and all execute the same protocol (i.e. the system is homogeneous). Moreover, we assume pairwise interactions between the processes that are scheduled by an adversary. The only constraint on the adversary scheduler is that it must be fair, intuitively meaning that it must assign to every reachable configuration of the system a non-zero probability to occur. In order to allow processes to construct networks, we let them activate and deactivate their pairwise connections. When two processes interact, the protocol takes as input the states of the processes and the state of their connection and updates all of them. In particular, in every interaction, the protocol may activate an inactive connection, deactivate an active one, or leave the state of a connection unchanged. Initially all connections are inactive and the goal is for the processes, after interacting and activating/deactivating connections for a while, to end up with a desired stable network (i.e. one that does not change any more). We give protocols (optimal in some cases) and lower bounds for several basic network construction problems such as spanning line, spanning ring, spanning star, and regular network. We provide proofs of correctness for all of our protocols and analyze the expected time to convergence of most of them under a uniform random scheduler that selects the next pair of interacting processes uniformly at random from all such pairs. Finally, we prove several universality results by presenting generic protocols that are capable of simulating a Turing Machine (TM) and exploiting it in order to construct a large class of networks. Our universality protocols use a subset of the population (waste) in order to distributedly construct there a TM able to decide a graph class in some given space. Then, the protocols repeatedly construct in the rest of the population (useful space) a graph equiprobably drawn from all possible graphs. The TM works on this and accepts if the presented graph is in the class. We additionally show how to partition the population into k supernodes, each being a line of log k nodes, for the largest such k. This amount of local memory is sufficient for the supernodes to obtain unique names and exploit their names and their memory to realize nontrivial constructions. Delicate composition and reinitialization issues have to be solved for these general constructions to work.

Abstract: We address an important communication issue in wireless cellular networks that utilize Frequency Division Multiplexing (FDM) technology. In such networks, many users within the same geographical region (cell) can communicate simultaneously with other users of the network using distinct frequencies. The spectrum of the available frequencies is limited; thus, efficient solutions to the call control problem are essential. The objective of the call control problem is, given a spectrum of available frequencies and users that wish to communicate, to maximize the number of users that communicate without signal interference. We consider cellular networks of reuse distance kge 2 and we study the on-line version of the problem using competitive analysis.
In cellular networks of reuse distance 2, the previously best known algorithm that beats the lower bound of 3 on the competitiveness of deterministic algorithms works on networks with one frequency, achieves a competitive ratio against oblivious adversaries which is between 2.469 and 2.651, and uses a number of random bits at least proportional to the size of the network. We significantly improve this result by presenting a series of simple randomized algorithms that have competitive ratios smaller than 3, work on networks with arbitrarily many frequencies, and use only a constant number of random bits or a comparable weak random source. The best competitiveness upper bound we obtain is 7/3.
In cellular networks of reuse distance k>2, we present simple randomized on-line call control algorithms with competitive ratios which significantly beat the lower bounds on the competitiveness of deterministic ones and use only random bits. Furthermore, we show a new lower bound on the competitiveness of on-line call control algorithms in cellular networks of reuse distance kge 5.

Abstract: In this work we consider temporal networks, i.e. networks defined by a labeling $\lambda$ assigning to each edge of an underlying graph G a set of discrete time-labels. The labels of an edge, which are natural numbers, indicate the discrete time moments at which the edge is available. We focus on path problems of temporal networks. In particular, we consider time-respecting paths, i.e. paths whose edges are assigned by $\lambda$ a strictly increasing sequence of labels. We begin by giving two efficient algorithms for computing shortest time-respecting paths on a temporal network. We then prove that there is a natural analogue of Menger’s theorem holding for arbitrary temporal networks. Finally, we propose two cost minimization parameters for temporal network design. One is the temporality of G, in which the goal is to minimize the maximum number of labels of an edge, and the other is the temporal cost of G, in which the goal is to minimize the total number of labels used. Optimization of these parameters is performed subject to some connectivity constraint. We prove several lower and upper bounds for the temporality and the temporal cost of some very basic graph families such as rings, directed acyclic graphs, and trees.

Abstract: We investigate the existence and efficient algorithmic construction
of close to optimal independent sets in random models of intersection
graphs. In particular, (a) we propose a new model for random
intersection graphs (Gn,m,p) which includes the model of [10] (the “uniform”
random intersection graphs model) as an important special case.
We also define an interesting variation of the model of random intersection
graphs, similar in spirit to random regular graphs. (b) For this
model we derive exact formulae for the mean and variance of the number
of independent sets of size k (for any k) in the graph. (c) We then propose
and analyse three algorithms for the efficient construction of large
independent sets in this model. The first two are variations of the greedy
technique while the third is a totally new algorithm. Our algorithms are
analysed for the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding close to optimal
independent sets for an interesting range of graph parameters.

Abstract: We investigate the existence and efficient algorithmic construction of close to opti-
mal independent sets in random models of intersection graphs. In particular, (a) we
propose a new model for random intersection graphs (Gn,m,~p) which includes the
model of [10] (the “uniform” random intersection graphs model) as an important
special case. We also define an interesting variation of the model of random intersec-
tion graphs, similar in spirit to random regular graphs. (b) For this model we derive
exact formulae for the mean and variance of the number of independent sets of size
k (for any k) in the graph. (c) We then propose and analyse three algorithms for
the efficient construction of large independent sets in this model. The first two are
variations of the greedy technique while the third is a totally new algorithm. Our
algorithms are analysed for the special case of uniform random intersection graphs.
Our analyses show that these algorithms succeed in finding close to optimal in-
dependent sets for an interesting range of graph parameters.

Abstract: Let M be a single s-t network of parallel links with load dependent latency functions shared by an infinite number of selfish users. This may yield a Nash equilibrium with unbounded Coordination Ratio [E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in: 16th Annual Symposium on Theoretical Aspects of Computer Science, STACS, vol. 1563, 1999, pp. 404-413; T. Roughgarden, E. Tardos, How bad is selfish routing? in: 41st IEEE Annual Symposium of Foundations of Computer Science, FOCS, 2000, pp. 93-102]. A Leader can decrease the coordination ratio by assigning flow {\'a}r on M, and then all Followers assign selfishly the (1-{\'a})r remaining flow. This is a Stackelberg Scheduling Instance(M,r,{\'a}),0≤{\'a}≤1. It was shown [T. Roughgarden, Stackelberg scheduling strategies, in: 33rd Annual Symposium on Theory of Computing, STOC, 2001, pp. 104-113] that it is weakly NP-hard to compute the optimal Leader's strategy. For any such network M we efficiently compute the minimum portion @b"M of flow r>0 needed by a Leader to induce M's optimum cost, as well as her optimal strategy. This shows that the optimal Leader's strategy on instances (M,r,@a>=@b"M) is in P. Unfortunately, Stackelberg routing in more general nets can be arbitrarily hard. Roughgarden presented a modification of Braess's Paradox graph, such that no strategy controlling {\'a}r flow can induce ≤1/{\'a} times the optimum cost. However, we show that our main result also applies to any s-t net G. We take care of the Braess's graph explicitly, as a convincing example. Finally, we extend this result to k commodities. A conference version of this paper has appeared in [A. Kaporis, P. Spirakis, The price of optimum in stackelberg games on arbitrary single commodity networks and latency functions, in: 18th annual ACM symposium on Parallelism in Algorithms and Architectures, SPAA, 2006, pp. 19-28]. Some preliminary results have also appeared as technical report in [A.C. Kaporis, E. Politopoulou, P.G. Spirakis, The price of optimum in stackelberg games, in: Electronic Colloquium on Computational Complexity, ECCC, (056), 2005].

Abstract: In this paper we study the threshold behavior of the fixed radius random graph model and its applications to the key management problem of sensor networks and, generally, for mobile ad-hoc networks. We show that this random graph model can realistically model the placement of nodes within a certain region and their interaction/sensing capabilities (i.e. transmission range, light sensing sensitivity etc.). We also show that this model can be used to define key sets for the network nodes that satisfy a number of good properties, allowing to set up secure communication with each other depending on randomly created sets of keys related to their current location. Our work hopes to inaugurate a study of key management schemes whose properties are related to properties of an appropriate random graph model and, thus, use the rich theory developed in the random graph literature in order to transfer ?good? properties of the graph model to the key sets of the nodes.
Partially supported by the IST Programme of the European Union under contact number IST-2005-15964 (AEOLUS) and the INTAS Programme under contract with Ref. No 04-77-7173 (Data Flow Systems: Algorithms and Complexity (DFS-AC)).

Abstract: We present an improved upper bound on the competitiveness of the online colouring algorithm First-Fit in disk graphs, which are graphs representing overlaps of disks on the plane. We also show that this bound is best possible for deterministic online colouring algorithms that do not use the disk representation of the input graph. We also present a related new lower bound for unit disk graphs.

Abstract: In this work, we introduce the notion of time to some well-known combinatorial optimization problems. In particular, we study problems defined on temporal graphs. A temporal graph D=(V,A) may be viewed as a time-sequence G_1,G_2,...,G_l of static graphs over the same (static) set of nodes V. Each G_t = D(t) = (V,A(t)) is called the instance of D at time t and l is called the lifetime of D. Our main focus is on analogues of traveling salesman problems in temporal graphs. A sequence of time-labeled edges (e.g. a tour) is called temporal if its labels are strictly increasing. We begin by considering the problem of exploring the nodes of a temporal graph as soon as possible. In contrast to the positive results known for the static case, we prove that, it cannot be approximated within cn, for some constant c > 0, in general temporal graphs and within (2 − \varepsilon), for every constant \varepsilon > 0, in the special case in which D(t) is connected for all 1 <= t <= l, both unless P = NP. We then study the temporal analogue of TSP(1,2), abbreviated TTSP(1,2), where, for all 1 <= t <= l, D(t) is a complete weighted graph with edge-costs from {1,2} and the cost of an edge may vary from instance to instance. The goal is to find a minimum cost temporal TSP tour. We give several polynomial-time approximation algorithms for TTSP(1,2). Our best approximation is (1.7 + \varepsilon) for the generic TTSP(1,2) and (13/8 + \varepsilon) for its interesting special case in which the lifetime of the temporal graph is restricted to n. In the way, we also introduce temporal versions of Maximum Matching, Path Packing, Max-TSP, and Minimum Cycle Cover, for which we obtain polynomial-time approximation algorithms and hardness results.

Abstract: There exists a great amount of algorithms for wireless sensor networks (WSNs) that have never been tried in practice. This is due to the fact that programming sensor nodes still happens on a very technical level. We remedy the situation by introducing our algorithm library Wiselib, which allows for simple implementations of algorithms. It can adopt to a large variety of hardware and software. This is achieved by employing advanced C++ techniques such as templates and inline functions, which allow to write generic code that is resolved and bound at compile time, resulting in virtually no memory or computation overhead at run time. The Wiselib runs on different host operating systems such as Contiki, iSense OS, and ScatterWeb. Furthermore, it runs on virtual nodes simulated by Shawn. The Wiselib provides an algorithm with data structures that suit the specific properties of the target platform. Algorithm code does not contain any platform-specific specializations, allowing a single implementation to run natively on heterogeneous networks. In this paper, we describe the building blocks of the Wiselib, analyze the overhead, and show how cryptographically secured routing algorithms can be implemented. We also report on results from experiments with real sensor node hardware.

Abstract: In this paper we describe a new simulation platform for complex wireless sensor networks that operate a collection of distributed algorithms and network protocols. Simulating such systems is complicated because of the need to coordinate different network layers and debug protocol stacks, often with very different interfaces, options, and fidelities. Our platform (which we call WSNGE) is a flexible and extensible environment that provides a highly scalable simulator with unique characteristics. It focuses on user friendliness, providing every function in both scriptable and visual way, allowing the researcher to define simulations and view results in an easy to use graphical environment. Unlike other solutions, WSNGE does not distinguish between different scenario types, allowing multiple different protocols to run at the same time. It enables rich online interaction with running simulations, allowing parameters, topologies or the whole scenario to be altered at any point in time.